Anti-contactin-1 Antibodies Affect Surface Expression and Sodium Currents in Dorsal Root Ganglia

Background and Objectives

As autoantibodies to contactin-1 from patients with chronic inflammatory demyelinating polyradiculoneuropathy not only bind to the paranodes where they are supposed to cause conduction failure but also bind to other neuronal cell types, we aimed to investigate the effect of anti–contactin-1 autoantibodies on contactin-1 surface expression in cerebellar granule neurons, dorsal root ganglion neurons, and contactin-1–transfected human embryonic kidney 293 cells.

Methods

Immunocytochemistry including structured illumination microscopy and immunoblotting was used to determine expression levels of contactin-1 and/or sodium channels after long-term exposure to autoantibodies from 3 seropositive patients. For functional analysis of sodium channels, whole-cell recordings of sodium currents were performed on dorsal root ganglion neurons incubated with anti–contactin-1 autoantibodies.

Results

We found a reduction in contactin-1 expression levels on dorsal root ganglion neurons, cerebellar granule neurons, and contactin-1–transfected human embryonic kidney 293 cells and decreased dorsal root ganglion sodium currents after long-term exposure to anti–contactin-1 autoantibodies. Sodium channel density did not decrease.

Discussion

Our results demonstrate a direct effect of anti–contactin-1 autoantibodies on the surface expression of contactin-1 and sodium currents in dorsal root ganglion neurons. This may be the pathophysiologic correlate of sensory ataxia reported in these patients.

Read article at journal's website

Related Articles

Responses

Your email address will not be published. Required fields are marked *