Phenotypic Spectrum of Dystrophinopathy Due to Duchenne Muscular Dystrophy Exon 2 Duplications

Background and Objectives

To describe the phenotypic spectrum of dystrophinopathy in a large cohort of individuals with DMD exon 2 duplications (Dup2), who may be particularly amenable to therapies directed at restoring expression of either full-length dystrophin or nearly full-length dystrophin through utilization of the DMD exon 5 internal ribosome entry site (IRES).

Methods

In this retrospective observational study, we analyzed data from large genotype–phenotype databases (the United Dystrophinopathy Project [UDP] and the Italian DMD network) and classified participants into Duchenne muscular dystrophy (DMD), intermediate muscular dystrophy (IMD), or Becker muscular dystrophy (BMD) phenotypes. Log-rank tests for time-to-event variables were used to compare age at loss of ambulation (LOA) in participants with Dup2 vs controls without Dup2 in the UDP database and for comparisons between steroid-treated vs steroid-naive participants with Dup2.

Results

Among 66 participants with Dup2 (UDP = 40, Italy = 26), 61% were classified as DMD, 9% as IMD, and 30% as BMD. Median age at last observation was 15.4 years (interquartile range 8.79–26.0) and 75% had been on corticosteroids for at least 6 months. Age at LOA differed significantly between participants with Dup2 DMD and historical controls without Dup2 DMD (p < 0.001). Valid spirometry was limited but suggested a delay in the typical age-related decline in forced vital capacity and 24 of 55 participants with adequate cardiac data had cardiomyopathy.

Discussion

Some patients with Dup2 display a milder disease course than controls without Dup2 DMD, and prolonged ambulation with corticosteroids suggests the potential of IRES activation as a molecular mechanism. As Dup2-targeted therapies reach clinical applications, this information is critical to aid in the interpretation of the efficacy of new treatments.

Read article at journal's website

Related Articles

Responses

Your email address will not be published.