Prospective, randomized, blinded, and placebo-controlled study of Cerebrolysin dose-response effects on long-term functional outcomes in a rat model of mild traumatic brain injury


Journal of Neurosurgery, Ahead of Print.
OBJECTIVECerebrolysin is a neuropeptide preparation that mimics the properties of neurotrophic factors and has had beneficial effects in the treatment of neurodegenerative diseases, stroke, and traumatic brain injury (TBI). To further evaluate treatment schemes, the authors assessed the dose-response of Cerebrolysin on functional improvement in a rat model of mild TBI (mTBI).METHODSThis dose-response study was a prospective, randomized, blinded, and placebo-controlled preclinical experiment. Male Wistar adult rats, subjected to mTBI induced by a closed head impact, were treated randomly with 0 (saline as placebo), 0.8, 2.5, or 7.5 ml/kg of Cerebrolysin 4 hours after mTBI and daily for a total of 10 consecutive days. A battery of cognitive and sensorimotor functional tests was performed over 90 days.RESULTSThe primary outcome was functional improvement over the 90 days; animal weight and death were the secondary and safety outcomes, respectively. A significant (p < 0.001) dose effect of Cerebrolysin on cognitive recovery 3 months after injury was found. Cerebrolysin at a dose of ≥ 0.8 ml/kg significantly (p < 0.001) improved cognitive outcome. The higher dose (7.5 ml/kg) resulted in significantly better cognitive recovery than the lowest doses (0.8 ml/kg) but not relative to the 2.5-ml/kg dose. Cerebrolysin at a dose of 2.5 or 7.5 ml/kg also caused different onset times of significant improvement in sensorimotor function. No differences in body weight or mortality rate among the groups were found.CONCLUSIONSThis preclinical randomized, placebo-controlled, and blinded study with a clinically relevant treatment scheme revealed that Cerebrolysin at doses of 0.8–7.5 ml/kg, administered 4 hours after mTBI and then once daily for a total of 10 consecutive days, improved functional outcomes 3 months after injury. A dose of 2.5 ml/kg is likely an optimal dose for the treatment of experimental mTBI.

Leave A Reply