The Influence of Form- and Meaning-Based Predictions on Cortical Speech Processing Under Challenging Listening Conditions: A MEG Study


Under adverse listening conditions, prior linguistic knowledge about the form (i.e., phonology) and meaning (i.e., semantics) help us to predict what an interlocutor is about to say. Previous research has shown that accurate predictions of incoming speech increase speech intelligibility, and that semantic predictions enhance the perceptual clarity of degraded speech even when exact phonological predictions are possible. In addition, working memory (WM) is thought to have specific influence over anticipatory mechanisms by actively maintaining and updating the relevance of predicted vs. unpredicted speech inputs. However, the relative impact on speech processing of deviations from expectations related to form and meaning is incompletely understood. Here, we use MEG to investigate the cortical temporal processing of deviations from the expected form and meaning of final words during sentence processing. Our overall aim was to observe how deviations from the expected form and meaning modulate cortical speech processing under adverse listening conditions and investigate the degree to which this is associated with WM capacity. Results indicated that different types of deviations are processed differently in the auditory N400 and Mismatch Negativity (MMN) components. In particular, MMN was sensitive to the type of deviation (form or meaning) whereas the N400 was sensitive to the magnitude of the deviation rather than its type. WM capacity was associated with the ability to process phonological incoming information and semantic integration.


Leave A Reply