Summary

Objective

Nocturnal frontal lobe epilepsy (NFLE) is an idiopathic partial epilepsy with a family history in about 25% of cases, with autosomal dominant inheritance (autosomal dominant NFLE [ADNFLE]). Traditional antiepileptic drugs are effective in about 55% of patients, whereas the rest remains refractory. One of the key pathogenetic mechanisms is a gain of function of neuronal nicotinic acetylcholine receptors (nAChRs) containing the mutated α4 or β2 subunits. Fenofibrate, a common lipid-regulating drug, is an agonist at peroxisome proliferator-activated receptor alpha (PPARα) that is a ligand-activated transcription factor, which negatively modulates the function of β2-containing nAChR. To test clinical efficacy of adjunctive therapy with fenofibrate in pharmacoresistant ADNFLENFLE patients, we first demonstrated the effectiveness of fenofibrate in a mutated mouse model displaying both disease genotype and phenotype.

Methods

We first tested the efficacy of fenofibrate in transgenic mice carrying the mutation in the α4-nAChR subunit (Chrna4S252F) homologous to that found in humans. Subsequently, an add-on protocol was implemented in a clinical setting and fenofibrate was administered to pharmacoresistant NFLE patients.

Results

Here, we show that a chronic fenofibrate diet markedly reduced the frequency of large inhibitory postsynaptic currents (IPSCs) recorded from cortical pyramidal neurons in Chrna4S252F mice, and prevented nicotine-induced increase of IPSC frequency. Moreover, fenofibrate abolished differences between genotypes in the frequency of sleep-related movements observed under basal conditions. Patients affected by NFLE, nonresponders to traditional therapy, by means of adjunctive therapy with fenofibrate displayed a reduction of seizure frequency. Furthermore, digital video-polysomnographic recordings acquired in NFLE subjects after 6 months of adjunctive fenofibrate substantiated the significant effects on control of motor–behavioral seizures.

Significance

Our preclinical and clinical studies suggest PPARα as a novel disease-modifying target for antiepileptic drugs due to its ability to regulate dysfunctional nAChRs.

Read More...

Read More...

Leave a comment.

Your email address will not be published. Required fields are marked*

Andoird App
Loading...