Parkinson’s disease (PD) is primarily a movement disorder driven by the loss of dopamine‐producing neurons in the substantia nigra (SN). Early identification of the oxidative properties of dopamine implicated it as a potential source of oxidative stress in PD, yet few studies have investigated dopamine neurotoxicity in vivo. The discovery of PD‐causing mutations in α‐synuclein and the presence of aggregated α‐synuclein in the hallmark Lewy body pathology of PD revealed another important player. Despite extensive efforts, the precise role of α‐synuclein aggregation in neurodegeneration remains unclear. We recently manipulated both dopamine levels and α‐synuclein expression in aged mice and found that only the combination of these 2 factors caused progressive neurodegeneration of the SN and an associated motor deficit. Dopamine modified α‐synuclein aggregation in the SN, resulting in greater abundance of α‐synuclein oligomers and unique dopamine‐induced oligomeric conformations. Furthermore, disruption of the dopamine‐α‐synuclein interaction rescued dopaminergic neurons from degeneration in transgenic Caenorhabditis elegans models. In this Perspective, we discuss these findings in the context of known α‐synuclein and dopamine biology, review the evidence for α‐synuclein oligomer toxicity and potential mechanisms, and discuss therapeutic implications. © 2019 International Parkinson and Movement Disorder Society


Leave a comment.

Your email address will not be published. Required fields are marked*

Andoird App