Waleed M. Renno September 5, 2017

Journal of Neurosurgery: Spine, Ahead of Print. OBJECTIVEThis study examined the capacity of the major polyphenolic green tea extract (−)-epigallocatechin-3-gallate (EGCG) to suppress oxidative stress and stimulate the recovery and prompt the regeneration of sciatic nerve after crush injury.METHODSAdult male Wistar rats were randomly assigned to one of 4 groups: 1) Naïve, 2) Sham (sham injury, surgical control group), 3) Crush (sciatic nerve crush injury treated with saline), and 4) Crush+EGCG (sciatic nerve crush injury treated with intraperitoneally administered EGCG, 50 mg/kg). All animals were tested for motor and sensory neurobehavioral parameters throughout the study. Sciatic nerve and spinal cord tissues were harvested and processed for morphometric and stereological analysis. For the biochemical assays, the time points were Day 1, Day 7, Day 14, and Day 28 after nerve injury.RESULTSAfter sciatic nerve crush injury, the EGCG-treated animals (Crush+EGCG group) showed significantly better recovery of foot position and toe spread and 50% greater improvement in motor recovery than the saline-treated animals (Crush group). The Crush+EGCG group displayed an early hopping response at the beginning of the 3rd week postinjury. Animals in the Crush+EGCG group also showed a significant reduction in mechanical allodynia and hyperalgesia latencies and significant improvement in recovery from nociception deficits in both heat withdrawal and tail flick withdrawal latencies compared with the Crush group. In both the Crush+EGCG and Crush groups, quantitative evaluation revealed significant morphological evidence of neuroregeneration according to the following parameters: mean cross-sectional area of axons, myelin thickness in the sciatic nerve (from Week 4

http://thejns.org/doi/abs/10.3171/2016.10.SPINE16218?mi=67t04w&af=R

Leave a comment.

Your email address will not be published. Required fields are marked*

Andoird App
Loading...