Hidetoshi Matsukawa September 5, 2017

Journal of Neurosurgery, Ahead of Print. OBJECTIVEAfter internal carotid artery (ICA) sacrifice without revascularization for complex aneurysms, ischemic complications can occur. In addition, hemodynamic alterations in the circle of Willis create conditions conducive to the formation of de novo aneurysms or the enlargement of existing untreated aneurysms. Therefore, the revascularization technique remains indispensable. Because vessel sizes and the development of collateral circulation are different in each patient, the ideal graft size to prevent low flow–related ischemic complications (LRICs) in external carotid artery (ECA)–middle cerebral artery (MCA) bypass with therapeutic ICA occlusion (ICAO) has not been well established. Authors of this study hypothesized that the adequate graft size could be calculated from the size of the sacrificed ICA and the values of MCA pressure (MCAP) and undertook an investigation in patients with complex ICA aneurysms treated with ECA-graft-MCA bypass and therapeutic ICAO.METHODSIn the period between July 2006 and January 2016, 80 patients with complex ICA aneurysms were treated with ECA-MCA bypass and therapeutic ICAO. Preoperative balloon test occlusion (BTO) was performed, and the BTO pressure ratio was defined as the mean stump pressure/mean preocclusion pressure. Low flow–related ischemic complications were defined as new postoperative neurological deficits and ipsilateral cerebral blood flow reduction. Initial MCAP (iMCAP), MCAP after clamping the ICA (cMCAP), and MCAP after releasing the graft (gMCAP) were intraoperatively monitored. The MCAP ratio was defined as gMCAP/iMCAP. Based on the Hagen-Poiseuille law, the expected MCAP ratio ([expected gMCAP]/iMCAP) was hypothesized as follows: (1 – cMCAP/iMCAP)(graft radius/ICA radius)2 + (cMCAP/iMCAP). Correlations


Leave a comment.

Your email address will not be published. Required fields are marked*

Andoird App