Methods Mol Biol. 2024;2707:3-22. doi: 10.1007/978-1-0716-3401-1_1.
ABSTRACT
We describe a straightforward, scalable method for administering traumatic brain injury (TBI) to zebrafish larvae. The pathological outcomes appear generalizable for all TBI types, but perhaps most closely model closed-skull, diffuse lesion (blast injury) neurotrauma. The injury is delivered by dropping a weight onto the plunger of a fluid-filled syringe containing zebrafish larvae. This model is easy to implement, cost-effective, and provides a high-throughput system that induces brain injury in many larvae at once. Unique to vertebrate TBI models, this method can be used to deliver TBI without anesthetic or other metabolic agents. The methods simulate the main aspects of traumatic brain injury in humans, providing a preclinical model to study the consequences of this prevalent injury type and a way to explore early interventions that may ameliorate subsequent neurodegeneration. We also describe a convenient method for executing pressure measurements to calibrate and validate this method. When used in concert with the genetic tools readily available in zebrafish, this model of traumatic brain injury offers opportunities to examine many mechanisms and outcomes induced by traumatic brain injury. For example, genetically encoded fluorescent reporters have been implemented with this system to measure protein misfolding and neural activity via optogenetics.
PMID:37668902 | DOI:10.1007/978-1-0716-3401-1_1