October 3, 2023

Neurosurg Rev. 2023 Sep 8;46(1):232. doi: 10.1007/s10143-023-02085-2.


Non-invasive imaging biomarkers are useful for prognostication in patients with traumatic brain injury (TBI) at high risk for morbidity with invasive procedures. The authors present findings from a scoping review discussing the pertinent biomarkers. Embase, Ovid-MEDLINE, and Scopus were queried for original research on imaging biomarkers for prognostication of TBI in adult patients. Two reviewers independently screened articles, extracted data, and evaluated risk of bias. Data was synthesized and confidence evaluated with the linked evidence according to the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach. Our search yielded 3104 unique citations, 44 of which were included in this review. Study populations varied in TBI severity, as defined by Glasgow Coma Scale (GCS), including: mild (n=9), mild and moderate (n=3), moderate and severe (n=7), severe (n=6), and all GCS scores (n=17). Diverse imaging modalities were used for prognostication, predominantly computed tomography (CT) only (n=11), magnetic resonance imaging (MRI) only (n=9), and diffusion tensor imaging (DTI) (N=9). The biomarkers included diffusion coefficient mapping, metabolic characteristics, optic nerve sheath diameter, T1-weighted signal changes, cortical cerebral blood flow, axial versus extra-axial lesions, T2-weighted gradient versus spin echo, translocator protein levels, and trauma imaging of brainstem areas. The majority (93%) of studies identified that the imaging biomarker of interest had a statistically significant prognostic value; however, these are based on a very low to low level of quality of evidence. No study directly compared the effects on specific TBI treatments on the temporal course of imaging biomarkers. The current literature is insufficient to make a strong recommendation about a preferred imaging biomarker for TBI, especially considering GRADE criteria revealing low quality of evidence. Rigorous prospective research of imaging biomarkers of TBI is warranted to improve the understanding of TBI severity.

PMID:37682375 | DOI:10.1007/s10143-023-02085-2